Hive整体优化策略

一 整体架构优化

现在hive的整体框架如下,计算引擎不仅仅支持Map/Reduce,并且还支持Tez、Spark等。根据不同的计算引擎又可以使用不同的资源调度和存储系统。

整体架构优化点:

1 根据不同业务需求进行日期分区,并执行类型动态分区。

相关参数设置:

0.14中默认hive.exec.dynamic.partition=ture

2 为了减少磁盘存储空间以及I/O次数,对数据进行压缩

相关参数设置:

job输出文件按照BLOCK以Gzip方式进行压缩。

mapreduce.output.fileoutputformat.compress=true
mapreduce.output.fileoutputformat.compress.type=BLOCK
mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec

map输出结果也以Gzip进行压缩。

mapreduce.map.output.compress=true
mapreduce.map.output.compress.codec=org.apache.hadoop.io.compress.GzipCodec

对hive输出结果和中间结果进行压缩。

hive.exec.compress.output=true
hive.exec.compress.intermediate=true

3 hive中间表以SequenceFile保存,可以节约序列化和反序列化的时间

相关参数设置:

hive.query.result.fileformat=SequenceFile

4 yarn优化,在此不再展开,后面专门介绍。

二 MR阶段优化

hive操作符有:

执行流程为:

reduce切割算法:

相关参数设置,默认为:

hive.exec.reducers.max=999
hive.exec.reducers.bytes.per.reducer=1G 

reduce task num=min{reducers.max,input.size/bytes.per.reducer},可以根据实际需求来调整reduce的个数。

三 JOB优化

1 本地执行

默认关闭了本地执行模式,小数据可以使用本地执行模式,加快执行速度。

相关参数设置:

hive.exec.mode.local.auto=true 

默认本地执行的条件是,hive.exec.mode.local.auto.inputbytes.max=128MB, hive.exec.mode.local.auto.tasks.max=4,reduce task最多1个。性能测试:

数据量(万) 操作 正常执行时间(秒) 本地执行时间(秒)
170 group by 36 16
80 count 34 6

2 mapjoin

默认mapjoin是打开的,hive.auto.convert.join.noconditionaltask.size=10MB

装载到内存的表必须是通过scan的表(不包括group by等操作),如果join的两个表都满足上面的条件,/*mapjoin*/指定表格不起作用,只会装载小表到内存,否则就会选那个满足条件的scan表。

四 SQL优化

整体的优化策略如下:

  1. 去除查询中不需要的column
  2. Where条件判断等在TableScan阶段就进行过滤
  3. 利用Partition信息,只读取符合条件的Partition
  4. Map端join,以大表作驱动,小表载入所有mapper内存中
  5. 调整Join顺序,确保以大表作为驱动表
  6. 对于数据分布不均衡的表Group by时,为避免数据集中到少数的reducer上,分成两个map-reduce阶段。第一个阶段先用Distinct列进行shuffle,然后在reduce端部分聚合,减小数据规模,第二个map-reduce阶段再按group-by列聚合。
  7. 在map端用hash进行部分聚合,减小reduce端数据处理规模。

    五 平台优化

    1hive on tez

2 spark SQL大趋势

总结

上面主要介绍一些优化思想,有些优化点没有详细展开,后面分别介绍yarn的优化细节、SQL详细的优化实例以及我们在Tez、spark等框架优化结果。最后用一句话共勉:边coding,边优化,优化无止境。

我来评几句
登录后评论

已发表评论数()