深度学习网络调参技巧

作者:萧瑟

来源: 炼丹实验室

整理:深度传送门

介绍

之前曾经写过一篇文章,讲了一些深度学习训练的技巧,其中包含了部分调参心得: 深度学习训练心得 [1]。不过由于一般深度学习实验,相比普通机器学习任务,时间较长,因此调参技巧就显得尤为重要。同时个人实践中,又有一些新的调参心得,因此这里单独写一篇文章,谈一下自己对深度学习调参的理解,大家如果有其他技巧,也欢迎多多交流。

好的实验环境是成功的一半

由于深度学习实验超参众多,代码风格良好的实验环境,可以让你的人工或者自动调参更加省力,有以下几点可能需要注意:

  • 将各个参数的设置部分集中在一起 。如果参数的设置分布在代码的各个地方,那么修改的过程想必会非常痛苦。

  • 可以输出模型的损失函数值以及训练集和验证集上的准确率。

  • 可以考虑设计一个子程序,可以根据给定的参数,启动训练并监控和周期性保存评估结果。 再由一个主程序,分配参数以及并行启动一系列子程序

画图

画图是一个很好的习惯,一般是训练数据遍历一轮以后,就输出一下训练集和验证集准确率。 同时画到一张图上 。这样训练一段时间以后,如果模型一直没有收敛,那么就可以停止训练,尝试其他参数了,以节省时间。

如果训练到最后,训练集,测试集准确率都很低,那么说明模型有可能 欠拟合 。那么后续调节参数方向,就是增强模型的拟合能力。例如增加网络层数,增加节点数,减少dropout值,减少L2正则值等等。

如果训练集准确率较高,测试集准确率比较低,那么模型有可能 过拟合 ,这个时候就需要向提高模型泛化能力的方向,调节参数。

从粗到细分阶段调参

实践中,一般先进行初步范围搜索,然后根据好结果出现的地方,再缩小范围进行更精细的搜索。

1. 建 议先参考相关论文, 以论文中给出的参数作为初始参数 至少论文中的参数,是个不差的结果。

2. 如果找不到参考,那么只能自己尝试了。 可以先从比较重要, 对实验结果影响比较大的参数开始 ,同时固定其他参数,得到一个差不多的结果以后,在这个结果的基础上,再调其他参数。 例如学习率一般就比正则值,dropout值重要的话,学习率设置的不合适,不仅结果可能变差,模型甚至会无法收敛。

3. 如果实在找不到一组参数,可以让模型收敛。那么就需要检查, 是不是其他地方出了问题 ,例如模型实现,数据等等。可以参考我写的 深度学习网络调试技巧 [2]

提高速度

调参只是为了寻找合适的参数,而不是产出最终模型。一般在小数据集上合适的参数,在大数据集上效果也不会太差。 因此可以尝试对数据进行精简 ,以提高速度,在有限的时间内可以尝试更多参数。

  • 对训练数据进行采样。例如原来100W条数据,先采样成1W,进行实验看看。

  • 减少训练类别。例如手写数字识别任务,原来是10个类别,那么我们可以先在2个类别上训练,看看结果如何。

超参数范围

建议优先在对数尺度上进行超参数搜索。比较典型的是学习率和正则化项,我们可以从诸如0.001 0.01 0.1 1 10,以10为阶数进行尝试。因为他们对训练的影响是相乘的效果。不过有些参数,还是建议在原始尺度上进行搜索,例如dropout值: 0.3 0.5 0.7)。

经验参数

这里给出一些参数的经验值,避免大家调参的时候,毫无头绪。

Learning rate:1 0.1 0.01 0.001, 一般从1开始尝试。很少见learning rate大于10的。学习率一般要随着训练进行衰减。衰减系数一般是0.5。衰减时机,可以是验证集准确率不再上升时,或固定训练多少个周期以后。

不过 更建议使用自适应梯度的办法 ,例如adam,adadelta,rmsprop等,这些一般使用相关论文提供的默认值即可,可以避免再费劲调节学习率。 对RNN来说 ,有个经验,如果RNN要处理的序列比较长,或者RNN层数比较多,那么learning rate一般小一些比较好,否则有可能出现结果不收敛,甚至Nan等问题。

网络层数:先从1层开始。

每层结点数:16 32 128,超过1000的情况比较少见。超过1W的从来没有见过。

batch size:128上下开始。batch size值增加,的确能提高训练速度。但是有可能收敛结果变差。如果显存大小允许,可以考虑从一个比较大的值开始尝试。因为batch size太大,一般不会对结果有太大的影响,而batch size太小的话,结果有可能很差。

clip c(梯度裁剪): 限制最大梯度 ,其实是value = sqrt(w1^2+w2^2….),如果value超过了阈值,就算一个衰减系系数,让value的值等于阈值: 5,10,15

dropout:0.5

L2正则:1.0,超过10的很少见。

词向量embedding大小:128,256

正负样本比例:这个是非常忽视,但是在很多分类问题上,又非常重要的参数。很多人往往习惯使用训练数据中默认的正负类别比例,当训练数据非常不平衡的时候,模型很有可能会偏向数目较大的类别,从而影响最终训练结果。除了尝试训练数据默认的正负类别比例之外,建议对数目较小的样本做过采样,例如进行复制。提高他们的比例,看看效果如何,这个对多分类问题同样适用。

在使用mini-batch方法进行训练的时候, 尽量让一个batch内,各类别的比例平衡 ,这个在图像识别等多分类任务上非常重要。

自动调参

人工一直盯着实验,毕竟太累。自动调参当前也有不少研究。下面介绍几种比较实用的办法:

  • Gird Search.这个是最常见的。具体说,就是每种参数确定好几个要尝试的值,然后像一个网格一样,把所有参数值的组合遍历一下。优点是实现简单暴力,如果能全部遍历的话,结果比较可靠。缺点是太费时间了,特别像神经网络,一般尝试不了太多的参数组合。

  • Random Search。Bengio在Random Search for Hyper-Parameter Optimization中指出,Random Search比Gird Search更有效。实际操作的时候,一般也是先用Gird Search的方法,得到所有候选参数,然后每次从中随机选择进行训练。

  • Bayesian Optimization.贝叶斯优化,考虑到了不同参数对应的实验结果值,因此更节省时间。和网络搜索相比简直就是老牛和跑车的区别。具体原理可以参考这个论文:Practical Bayesian Optimization of Machine Learning Algorithms ,这里同时推荐两个实现了贝叶斯调参的Python库,可以上手即用:

    • jaberg/hyperopt, 比较简单。

    • fmfn/BayesianOptimization, 比较复杂,支持并行调参。

总结

1. 合理性检查,确定模型,数据和其他地方没有问题。

2. 训练时跟踪损失函数值,训练集和验证集准确率。

3. 使用Random Search来搜索最优超参数,分阶段从粗(较大超参数范围训练较少周期)到细(较小超参数范围训练较长周期)进行搜索。

参考资料

1. https://zhuanlan.zhihu.com/p/20767428

2. https://zhuanlan.zhihu.com/p/20792837

3. Practical recommendations for gradient-based training of deep architectures by Yoshua Bengio (2012)

4. Efficient BackProp, by Yann LeCun, Léon Bottou, Genevieve Orr and Klaus-Robert Müller

5. Neural Networks: Tricks of the Trade, edited by Grégoire Montavon, Geneviève Orr, and Klaus-Robert Müller

本文转载自公众号: 深度传送门, 作者 萧瑟

推荐阅读

神奇的Embedding

当BERT遇上知识图谱

深度学习中不得不学的Graph Embedding方法

Google工业风最新论文, Youtube提出双塔结构流式模型进行大规模推荐

揭开YouTube深度推荐系统模型Serving之谜

经典! 工业界深度推荐系统与CTR预估必读的论文汇总

关于AINLP

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLP君微信(id:AINLP2),备注工作/研究方向+加群目的。

我来评几句
登录后评论

已发表评论数()

相关站点

+订阅
热门文章